Slurry-1, 460	Structural—, 113	Thermal-8, 12; 9, 166	Trichlorofluormethane-1,	Vapor Phase-5, 621; 9,
Soaking-8, 123	Sucrose-1, 490	Thermal Conduction-8,	18	482
Sodium Chloride-1, 490	Super Heating-6, 149	322	Triethylene Glycol Di-	Vapor Pressure—8, 357;
Sodium Sulfate-1, 460	Supersaturation—6, 639	Thermal Conductivity-,	methyl Ether-1, 668	9, 604
	Surface-4, 635; 8, 478	221; 7, 221, 340, 610;	Tube Flow-8, 467	Vapor Pressure-6, 7, 590
217, 298, 340	Surface Flow-7, 539	8, 221, 340, 610; 9,	Tubes-10, 18, 26, 154,	Vapor Pressure Slope-6,
Solubilities—7, 501	Surface Temperature-6,	221	266, 317, 335, 450	455
Solubility-8, 519, 546,	590	Thermal Diffusion-9,	Tunnels-10, 103	Vapors-8, 117, 163
668	Surfaces-6, 659; 8, 12,	521	Turbine Impellers-10,	Vaporization-8, 309; 9,
Solubility Parameters—2,	30; 9, 5,	Thermodynamic—, 176	617	34
508; 9 , 681	Surface Tension-6, 309,	Thermodynamics—5, 501;	Turbines-10, 262	Vaporization Equilibrium
Solution-1, 460; 5, 519,	478	8, 394, 482, 604, 681;	Turbulence—8, 103, 471;	Constants-2, 508
		9, 117, 163, 209, 559;	9, 30, 34, 70, 103, 266,	Variational-10, 663
649	Surfactants-6, 262	10, 322	335, 383, 389, 672	Variations-7, 359
Solutions—2, 668	Suspension—8, 149; 9, 93,	•	Turbulent Boundary Lay-	Vector Analysis—8, 214
Solutions (Mixture)—8,	266	Thorium Dioxide—1, 266	er-6, 498	Velocities-6, 205, 239,
79, 233, 317, 394, 482;	Suspensions—9, 346	Thymol-1, 590	Turbulent Intensity-6,	248; 7, 513
9, 335, 604, 681	Т	Time-6, 350, 649; 8, 450	498	Velocity-6, 30, 127, 473,
Solution Theory—8, 455	-	Titanium Dioxide—1, 266	Twot Film Theory-10,	478; 7, 149, 350, 599;
Solvent-4, 455	Tables-2, 490	Toluene-1, 309, 646; 5,		9, 26
Solvents-8, 66; 9, 66,		233, 659	389	Vinyl Compounds—2, 183
335, 646	Techniques—9, 163; 10,	Total Pressure—6, 445		Viscometry-9, 190
Sources—9, 245	5, 214, 303	Towers-10, 309	${f U}$	Viscosity—6, 93, 599, 654;
Speed- 6 , 262	Temperature—, 437; 6,	Tracers-10, 53	. 11 1 0 000	7, 229, 335; 8 , 59,
Sphere- 5 , 663	12, 30, 42, 149, 154,	Trajectory—8, 460	Uncontrolled-6, 629	
Spheres-9, 359, 608; 10,	183, 190, 221, 229,	Transfer—8, 690	Unsteady State-9, 389;	190, 229; 9, 154, 335,
34, 383	403, 455, 546, 590,	Transfer Functions-8,	10, 205, 248, 389	521 Vissal 200
Spontaneous-2, 350	604, 610, 668, 681;	593	Upper Velocity Limit-7,	Visual—, 209
Sprayers—10, 672	7 , 303, 513; 8 , 209,	Transferring-8, 34, 303;	498	Voids-, 217; 7, 359; 8,
Spraying-8, 460; 9, 149	450, 478; 9 , 5, 357, 690	9, 5, 30, 53, 79, 248		359
Sprays-8, 149	Temperature Difference—	Transient Behavior-7,	v	Volume_9, 86
Stability-8, 672; 9, 513,	6, 587	639	•	Vortex-6, 617
690	Temperature Gradient-6,	Transient Response-2,	Vacuum-5, 590; 8, 298	W
Stages—9, 214	539	407; 8, 593	Van Arkel—, 455	VV
Stagnation-, 513	Ternary-, 38, 221; 9, 209	Transition-8, 467	Van der Waals Constants	Wakes-9, 103
	Tetraethylene Glycol Di-	Transition State-, 685	-6, 610	Walls-9, 245
-2 , 508	methyl Ether-1, 668	Transport-7, 154; 8, 12,	Van Ĺaar–, 455	Water-, 103; 1, 26, 149,
Steam-1, 30	Theorem of Correspond-	30, 34, 38, 70, 221,	Van Laar Constants-2,	205, 233, 309, 685; 2,
State Conditions-9, 209	ing States—10, 455	245, 266, 346, 383,	508; 7, 455	42, 183, 621; 5, 30,
Stationary—, 350	Theoretical—5, 460	646, 649; 9 , 63, 79,	Vapor-5, 455, 501, 519	53, 79, 123, 171, 248,
Statistical—8, 629	Theoretical Analysis—1,	166, 217, 248, 298,	Vapor-Liquid Equilibria	
Step-Change-1, 407	445	329	-8, 604	587, 649, 659, 685; 8,
Stirrers-10, 262	Theories-10, 93, 303,	Transport Properties-8,	Vapor-Liquid Equili-	163; 9 , 6, 17, 34, 59,
Stirring—9, 93	394	521	brium—8, 681	103, 335
Stresses-8, 317	Theory-10, 171, 205,	Triangular Duct-5, 599		Wetted Wall-, 171, 205
Stripes-2, 350	346, 389, 646	Trichloroethylene-1, 309	brium Data-1, 508	Wetting-6, 659
541pcs 2, 000	310, 000, 010	included spicific -1, 505	Main Data -1, 000	77 Ctting- 0, 000

INFORMATION RETRIEVAL*

Key Words: A. Kinetics-8, Correlation-2, Computers-10, Differential Equations-1, Concentrations-2, Integration-10. B. Kinetics-8, Ethylene Oxide-1, Ammonia-1, Ethanolamines-2, Benzene-1, Chlorine-1, Chlorobenzene-2, Methanol-1, Propylene-1, Proplyene Oxide-1, Correlation-1, Computers-10, Rate Constants-2, Concentrations-1, Least Squares-4.

Abstract: A new method of obtaining an approximate integral solution of a set of differential rate equations is described. The method is used to correlate experimental data on systems whose stoichiometry would indicate a consecutive competitive mechanism. The estimates of the rate constants, found by fitting the approximate solution to the data, are within experimental error of the values obtained by other methods.

Reference: Friedman, M. H., and R. R. White, A.I.Ch.E. Journal, 8, No. 5, p. 581 (November, 1962).

* For details on the use of these key words and the A.I.Ch.E. Information Retrieval Program, see Chem. Eng. Progr., 57, No. 5, p. 55 (May, 1961), No. 6, p. 73 (June, 1961); **58**, No. 7, p. 9 (July, 1962).

(Continued on page 705)

ERRATUM

It has been called to the attention of R. E. Emmert and R. L. Pigford by Professor P. V. Danckwerts that some data which they extracted from a paper by Bates and Pinching* were misinterpreted in "Gas Absorption Accompanied by Chemical Reaction," which appeared in the May, 1962, issue of the A.I.Ch.E. Journal. As a consequence, Emmert and Pigford's analysis of the relative effects of competing reactions based on previous workers' data must be modified. This change does not in any way alter their own data or their interpretation. This erratum describes the changes needed to account for this misinterpretation. All changes are in the section labeled "Reaction Mechanism."

In order to determine the concentrations of hydroxyl ion and free amine

^{*} Bates, R. G., and G. D. Pinching, J. Research Natl. Bur. Standards, 46, 349 (1951).

Table 1. Concentrations of OH⁻ and Free Monoethanolamine in Solutions of Various Strengths of Total Amine Based on Data of Bates and Pinching

$\mathbf{B}_{\mathbf{o}}$	(B)	(OH-)	(B)/(OH ⁻)
0.01	0.00945	0.00055	17.3
0.1	0.0982	0.00178	55.1
0.5	0.496	0.00397	125
1.0	0.9944	0.0056	177
2.0	1.9926	0.00744	268

in solutions of various total amine strengths Emmert and Pigford used the basic dissociation constant for this reaction as reported by Bates and Pinching. In the original Bates and Pinching paper, the basic dissociation constant was defined as being equal to K_w , "the ionization constant of water," divided by K_{bh} , the dissociation constant of ethanol ammonium ion. Actually Bates and Pinching intended that K_w be the ion product of water, which is equal to 10^{-14} , instead of the dissociation constant of water which is equal to 1.8 imes 10⁻¹⁶. The consequence is that the equations shown in Column 1, page 173, of Emmert and Pigford's article should read

$$K_{\scriptscriptstyle b} = rac{\left(\mathrm{BH^{\scriptscriptstyle +}}\right)\left(\mathrm{OH^{\scriptscriptstyle -}}
ight)}{\left(\mathrm{B}
ight)} \cdot rac{\gamma\mathrm{BH^{\scriptscriptstyle +}}\,\gamma\mathrm{OH^{\scriptscriptstyle -}}}{\gamma\mathrm{B}} = \ 3.18 imes 10^{-5} \left(25\,^{\circ}\mathrm{C.}
ight)$$

Table 2. Relative Influence of Parallel, Fast-Reaction Baths in Consuming Carbon Dioxide (Based on Initial Rates)
Per Cent of Carbon Dioxide Consumed by Rx

				Moles amine
				consumed/mole
\mathbf{B}_{o}	1	2	3	CO2 reaction, v
0.01	91.6	8.1	0.3	1.08
0.1	97.2	2.7	0.1	1.03
0.5	98.6	1.2	0.2	1.01
1.0	98.8	0.9	0.3	1.01
2.0	99.0	0.6	0.4	1.01

and

$$\frac{{
m (BH^+)\,(OH^-)}}{{
m (B)}} = 3.18 \times 10^{-5} \; (25^{\circ}{
m C.})$$

Tables 1 and 2 must then be revised to the following:

So the average stoichiometric factor is estimated theoretically to lie between 1.0 and 1.1, as contrasted with the experimentally observed value of 1.78.

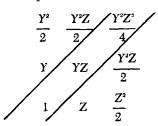
These corrections do not alter Emmert and Pigford's previous conclusions in comparing stoichiometric coefficients extracted from their absorption data with those predicted from mechanism data. The disagreement which previously existed is even

Table 3. Rate Constants for Reaction HOC₂H₄NHCOOH + H₂O HOC₂H₄NH₄CO₃ Calculated from Data of Faurholt (18°C.) (Carbamate + H₂O Carbonate)

	k_{forward}	$k_{ ext{reverse}}, \\ ext{sec.}^{-1}$	
\mathbf{B}_{o}	sec1		
1.0	$1.2 imes10^{-6}$	$1.5 imes10^{-6}$	
0.1	$1.6 imes10^{-5}$	0.44×10^{-5}	
0.01	$1.3 imes 10^{-4}$	0.12×10^{-4}	

greater now. They still have no explanation for this disagreement.

The rate constants for the carbamate-to-carbonate reaction calculated from the rate expression of Faurholt, et al. (employing dissociation constants from Bates and Pinching) must also be revised, although little change results. Agreement with the writers' rate measurements for a 0.1N amine solution still remains good. Based on an estimated activation energy Emmert and Pigford's measurement (corrected to 18° C.) gives k_{torward} of 2×10^{-5} sec. 1 compared with the calculated value of 1.6×10^{-5} sec. Table 3 shows revised values. However the values for the reverse reaction rate constant (which Emmert and Pigford did not employ in interpreting their data) are changed significantly.


Communications to the editor

Equations for Transient Heat Transfer in Packed Beds

ADRIAAN KLINKENBERG

University of Texas, Austin, Texas

Readers interested in transient heat and mass transfer in packed beds [theories developed since 1926 by Anzelius (1), Schumann (2), Furnas (3), Nusselt (4), Thomas (5), and many others, see a 1954 survey (6)] may have use for the following table, an array of terms from some frequently met infinite double-power series [see (5) and (6)], higher terms than those of second degree in Y and Z having been omitted only for the sake of simplicity in reproduction:

Adriaan Klinkenberg is with the Royal Dutch Shell Group, The Hague, Holland.

Starting from unity, in the left-hand bottom corner, each term is derived either from the one below it by an integration with respect to Y or from the one to the left by an integration with respect to Z.

By combining groups of terms with equal degree, one sees that the sum is $e^{\frac{y}{r}\cdot z}$.

By moving one step in the 45-deg. direction this sum is seen to be a solu-

tion of
$$\frac{\partial^2 \phi}{\partial Y \partial Z} = \phi$$
.

If one divides the table by lines in the 45-deg. direction, as shown, the same differential equation holds true for each part of the table, the boundary conditions varying from case to case because in each section separately all terms are converted into others of the same section by the $\frac{\partial^2}{\partial Y \partial Z}$ operation.

Now if T_1 and T_2 are the solutions of the well-known heat transfer problem

$$\frac{\partial T_2}{\partial Z} = -\frac{\partial T_1}{\partial Y} = T_1 - T_2$$

with

$$Z = 0; T_2 = 0$$

 $Y = 0; T_1 = 1$

where T_1 and T_2 represent the gas and solid temperatures at place Y and time (corrected for position) Z, the three sections of the table represent (from left to right) see for instance (6):

$$e^{Y+Z}(1-T_1) = e^{Y} \int_0^Y e^{-u}I_0 (2\sqrt{uZ}) du$$

= $\phi(Y,Z)$